skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Phetheet, Jirapat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Effects of a changing climate on agricultural system productivity are poorly understood, and likely to be met with as yet undefined agricultural adaptations by farmers and associated business and governmental entities. The continued vitality of agricultural systems depends on economic conditions that support farmers’ livelihoods. Exploring the long-term effects of adaptations requires modeling agricultural and economic conditions to engage stakeholders upon whom the burden of any adaptation will rest. Here, we use a new freeware model FEWCalc (Food-Energy-Water Calculator) to project farm incomes based on climate, crop selection, irrigation practices, water availability, and economic adaptation of adding renewable energy production. Thus, FEWCalc addresses United Nations Global Sustainability Goals No Hunger and Affordable and Clean Energy. Here, future climate scenario impacts on crop production and farm incomes are simulated when current agricultural practices continue so that no agricultural adaptations are enabled. The model Decision Support System for Agrotechnology Transfer (DSSAT) with added arid-region dynamics is used to simulate agricultural dynamics. Demonstrations at a site in the midwest USA with 2008–2017 historical data and two 2018–2098 RCP climate scenarios provide an initial quantification of increased agricultural challenges under climate change, such as reduced crop yields and increased financial losses. Results show how this finding is largely driven by increasing temperatures and changed distribution of precipitation throughout the year. Without effective technological advances and operational and policy changes, the simulations show how rural areas could increasingly depend economically on local renewable energy, while agricultural production from arid regions declines by 50% or more. 
    more » « less